
1521-9615 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MCSE.2020.2986758, Computing in Science & Engineering

CiSE Published by the IEEE Computer Society © 2020 IEEE

Artificial Intelligence and

Mobile Programming Courses

for a Video Game

Development Program in Chile

Nicolas A. Barriga

Escuela de Ingeniería en Desarrollo de Videojuegos y

Realidad Virtual, Facultad de Ingeniería, Universidad de

Talca, Campus Talca, Chile. nbarriga@utalca.cl

Felipe Besoaín

Escuela de Ingeniería en Desarrollo de Videojuegos y

Realidad Virtual, Facultad de Ingeniería, Universidad de

Talca, Campus Talca, Chile. fbesoain@utalca.cl

Abstract— We present our curriculum design process for two third-year undergraduate

courses: Artificial Intelligence for Video Games and Mobile Device Programming. These are

part of a 4.5 year program in Video Game Development and Virtual Reality Engineering. We

explore the range of possible content, usually aimed at traditional computer science or

software engineering students or practitioners, and extract and adapt it to our particular

program. Students developed high quality apps, achieved good standings in AI competitions,

and some even published peer-reviewed articles. We believe the approach presented in this

article is broadly applicable, but can be specially useful to instructors creating courses for

uncommon and innovative programs.

 IN RECENT YEARS several attempts have been

made at using video games to teach general Artificial

Intelligence courses [1], [2]. However, there hasn't

been much discussion on how to teach Video Game

AI. Video game AI techniques, as used in industry,

have some overlap with standard academic AI topics,

such as best-first search. Still, traditional AI courses

rarely teach the basic methods of video game AI, such

as: decision making via finite-state machines (FSMs),

behavior trees (BTs) or utility; hierarchical

pathfinding; or procedural content generation (PCG).

The spread of information and communication

technology (ICT) in the population has increasingly

grown, in particular mobile phone technology.

Smartphone technology continues to be the principal

motor of growth for ICT. According to Global Mobile

Market Report (newzoo.com), smartphone penetration

in developed countries is around 70% to 80%, while

in developing countries it is roughly between 25% and

Department: Head

Editor: Name, xxxx@email

Authorized licensed use limited to: Universidad de Talca. Downloaded on April 14,2020 at 22:16:29 UTC from IEEE Xplore. Restrictions apply.

1521-9615 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MCSE.2020.2986758, Computing in Science & Engineering

Department Head

2 Computing in Science & Engineering

50%, and growing steadily. Mobile devices are a key

market for video games accounting for 45% of the

USD$152Bn global video game revenue, and 76% of

the USD$92Bn global mobile apps revenue. In this

context, knowing how to develop mobile applications

is an important skill to develop during this

undergraduate program.

This work describes our approach for creating and

teaching two undergraduate courses: 1) Artificial

Intelligence for Video Games; and 2) Mobile Device

Programming. The curriculum has been designed in a

way that the second course reinforces the first,

through projects and practical applications, where the

students apply all the theoretical algorithms, learned

in the first course, in the development of mobile

applications. It draws inspiration from both academic

and industry literature, as well as from direct

communication with game AI professionals.

PROGRAM DESCRIPTION

The Video Game Development and Virtual Reality

Engineering undergraduate program is aimed at

students who want to develop their creativity and

technological skills with applications in virtual

environments.

The program presents a multidisciplinary graduate

profile with the aim of providing students with the

competencies needed for the creation of video games

with an emphasis on informatics, software

development and the application of information and

communications technology to this area. The

curriculum blends the fields of engineering and design

to instruct professionals with scientific and creative

competencies for working in the interactive

entertainment and virtual simulation industry,

developing entrepreneurship, and addressing diverse

areas such as recreation, simulation, education, and

training, among others. The graduates will have a

solid foundation in basic design and computer

sciences, with a modern, proactive focus.

The graduate’s distinctive characteristic will be

reflected in his/her entrepreneurship and leadership

skills for executing innovative solutions using

information technologies to develop videogames and

applications, incorporating teamwork skills.

Moreover, the graduate’s multidisciplinary training

will allow him/her to contribute in the development

and management of creative industry and software

projects, as well as to take on emerging technologies

and new areas.

COURSE AUDIENCES AND SCOPE

The curriculum of the Video Game Development

and Virtual Reality Engineering undergraduate

program is 4.5 years long, divided into three blocks.

First, two years of basic science and foundation

courses of each discipline (design, computer science,

general education, foreign Language), leading to an

associate’s degree. Second, two years of specialized

and detailed instruction, complementing the first

block, leading to a bachelor’s degree. Lastly, with the

final degree project, skills related to innovation and

entrepreneurship are stressed, and a first professional

degree is obtained. The program summary [3] shows

pre-requisites for the courses described in this article.

Early in the conception of the Video Game

Development and Virtual Reality Engineering

program we decided that harmonization between

courses would play a large role in the design process.

We coordinated several small clusters of courses, such

as the one presented in this article, as well as larger

groups. Each block includes a workshop course with a

high credit load and 7 to 8 hours in a laboratory,

working in a project that ties all the competencies

learned in the previous courses (see courses in yellow

in [3]). For example, the first of these workshops (2D

Game Programming Workshop) caps and integrates

the knowledge, skills and competencies acquired in

three product design courses, three programming

courses and three video game development courses.

This is also considered a checkpoint were professors

can check if the students are developing the

competencies and skills properly or if they need some

support on their progress.

Students are also exposed to other early

experiences of course articulation, such as making one

game project for three courses in the same semester,

as seen on the courses in green in [3]. In this case,

each course contributes with their disciplinary

competency: programming, concept design,

videogames basics.

Taking these workshop and introductory courses as

an example, we designed a coordinated process

between Artificial Intelligence for Video Games and

Mobile Device Programming courses, aimed at

offering students the chance to apply and develop

their competencies in a related area, going from theory

to practice.

Artificial Intelligence for Video Games is a one

semester, 6 European Credit Transfer and

Accumulation System (ECTS) credits [4] (1 credit is

around 25 to 30 hours) long course. Our students are

in the fifth semester of the 4.5 years Video Game

Authorized licensed use limited to: Universidad de Talca. Downloaded on April 14,2020 at 22:16:29 UTC from IEEE Xplore. Restrictions apply.

1521-9615 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MCSE.2020.2986758, Computing in Science & Engineering

July/August 2020 3

Development and Virtual Reality Engineering

undergraduate program. They have already taken

several computer science courses, such as structured

programming, object-oriented programming,

databases, algorithms and data structures, as well as

various video game development courses and

workshops. Mobile Device Programming, a 4 ECTS

credits course, is delivered the following semester.

Our aim is to cover AI techniques currently in use

in video games (e.g, FSMs, BTs, A*, constructive

PCG), newer methods that are slowly finding their

way into commercial games (e.g., Monte-Carlo Tree

Search, MCTS) and novel techniques that might be

useful in the close future (e.g., machine learning and

search-based PCG). Due to the expanse of the subject

matter at hand, we can’t cover every topic in detail.

We will use a mix of guided programming activities

(labs), solo programming assignments, research

assignments, readings and lectures. The content

deemed most relevant to the students’ future careers

will be taught in depth, using all four methods, while

topics whose application to video games is more

speculative will be given less attention (e.g., by only

assigning a reading).

On the other hand, in the mobile devices course,

we aim to study the growth of this technology and its

applications for programming mobile applications. In

this context, we work with Android OS due to its

open-source license and SDK available to the

developer community. The content goes from building

a strong foundation in the Kotlin language (e.g, by

resolving problems without a GUI, using only the core

language), then understanding the Android OS and

applications architecture, to programming apps that

require access to sensors like accelerometers, GPS,

light, etc. and services such as databases, Firebase

among others. With this in mind, students build a

portfolio of developed apps with different

functionalities. They will later develop a final course

project.

In the case of the two courses presented here, we

have decided to coordinate the more theoretic artificial

intelligence and the largely practical mobile devices

courses by having the programming assignments in

the latter use AI algorithms. We have settled on

single- and two-player board games in a mobile

platform, which allows us to include single-agent

search, pathfinding and/or adversarial search

algorithms.

CONTENT

In this section, we present a compilation of the

most relevant content we considered, as well as the

content we finally selected for each course.

Artificial Intelligence for Video Games

We consider content covered by game AI books

targeted at industry professionals, books covering

academic game AI research, as well as some

discussions in the AI Game Programmers Guild

mailing list. For details, see Table 1.

Millington and Funge’s Artificial Intelligence for

Games [5] is the de facto standard textbook for game

AI professionals. It covers a wide range of topics in

great detail, while focusing on the methods

themselves, rather than on the applications.

Mat Buckland’s Programming Game AI by

Example [6] is much more application oriented. It

starts from example games, and pulls in the necessary

knowledge, leading to a more applied, but less

systematic and detailed coverage of the topics.

Table 1. Topics covered in Video Game AI books.

Topic Details

Artificial Intelligence for Games [5]

Movement Kinematics, steering, groups.

Pathfinding (PF) Representation, search,

hierarchical PF.

Decision making FSMs, BTs, fuzzy logic, goal-

driven, rule based, scripting.

Tactics and strategy Waypoints, terrain analysis,

tactical PF, coordination.

Learning Hill-climbing, Machine Learn-

ing (ML), Reinf. Learning (RL).

Tree search Minimax, optimizations.

Execution management Scheduling, anytime algorithms,

Level of Detail.

World interfacing Polling, events.

Programming Game AI by Example [6]

Movement Steering, groups.

Decision making FSMs, scripting, goal-driven

agents, fuzzy logic.

Pathfinding Representation, search,

smoothing.

Artificial Intelligence and Games 7]

Decision making FSMs, BTs, utility, evolutionary

algorithms (EA).

Tree search Minimax, MCTS.

Learning ML, RL.

PCG Search-based, solver, grammar,

cellular automata, noise and

fractals, ML.

Modelling players ML.

Authorized licensed use limited to: Universidad de Talca. Downloaded on April 14,2020 at 22:16:29 UTC from IEEE Xplore. Restrictions apply.

1521-9615 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MCSE.2020.2986758, Computing in Science & Engineering

Department Head

4 Computing in Science & Engineering

A recent book coming from academia is

Yannakakis and Togelius’ Artificial Intelligence and

Games [7]. Here, the focus is clearly on the methods,

in particular newer methods coming from academia,

most of which have not been used in commercial

games. It is written as a survey of the subject, giving a

broad overview, but glossing over the implementation

details. It contains numerous references for those

wanting to dig deeper.

We have not covered some closely related, but

very subject specific books, such as Dave Mark’s

Behavioral Mathematics for Game AI [8] on utility-

based AI, Brian Schwab’s AI Game Engine

Programming [9] and Shaker et al.’s Procedural

Content Generation in Games [10].

Finally, we compiled our own personal

communications with professional video game

programmers, as well as discussions that have taken

place in the AI Game Programmers Guild, a forum for

industry professionals. Most developers agree on the

broad topics of pathfinding, decision making and

PCG, with some differences in specific algorithms.

For example, A* and FSMs are seen as old—by

some—and superseded by hierarchical pathfinding

and BTs, while others prefer to include them, to build

up from the basics. Adoption of other topics is more

fragmented: movement and animation are seen as

important, but they are usually covered in other

courses in game programming programs; adversarial

search and machine learning are considered niche

areas, not part of the regular AI programmer’s

toolbox, but useful tools if you have them.

Selected AI Content

In this section we present the topics we have

chosen to cover. We dismissed topics already seen by

our students, such as movement and animation. We

start with a review of basic search algorithms, since a

working knowledge of them is crucial to later

subjects. We then move to pathfinding and decision

making, of which there is an agreement both in the

literature and in the practitioner community. We then

spend a significant amount of time on tree search

algorithms. We believe that they have a big niche of

current applications in board games, as well as

potential new uses in the near future in card and

strategy games. We finish the semester with an

overview of PCG, both using traditional methods and

emerging AI-based ones. A summary can be viewed

in Table 2.

We believe this selection of content provides our

students with a good balance of job-ready skills and a

broad algorithmic understanding of the field.

Table 2. Video Game AI course topics.

Topic Weeks Details

Search 2 Trees.

Graphs.

Breadth-First Search.

Depth-First Search.

Dijkstra.

Pathfinding 3 Map representations.

A*.

JPS+.

Decision

making

4 Decision trees.

Finite-State Machines.

Behavior Trees.

Utility.

Tree Search 3 Game tree search.

Search optimizations.

Evaluation functions.

Monte-Carlo Tree Search.

PCG 2 Traditional methods: constructive,

fractals, noise, grammars.

AI methods: search-based, ML.

AI Content Delivery

The AI content was delivered using a flipped

classroom approach. The approach consisted of

weekly readings—mostly chapters from the Game AI

Pro [11] and AI Game Programming Wisdom [12]

book series—followed by short questionnaires at the

beginning of each class to assess students’

understanding of the material. Then, the instructor

would fill in any perceived gaps in knowledge and

follow with group exercises. Lab time was spent, on

alternating weeks, on guided programming tasks or

individual programming assignments.

Mobile Device Programming

Similar to the AI for video games course, for

mobile device programming we considered content

covered by several Android development books

targeted at academic and industry professionals, and

also the official Android development website.

Dawn and David Griffiths’ Head First Android

Development: A Brain-Friendly Guide [13], is

particularly interesting because of their approach in

the Head First series that is based on cognitive

science and learning theory, using a visually rich

Authorized licensed use limited to: Universidad de Talca. Downloaded on April 14,2020 at 22:16:29 UTC from IEEE Xplore. Restrictions apply.

1521-9615 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MCSE.2020.2986758, Computing in Science & Engineering

July/August 2020 5

format to engage the reader rather than a text-heavy

approach. This approach proves beneficial to engaging

students and enhancing their learning process, both

inside and outside of the classroom.

Neil Smyth’s Android Studio 3.0 and 3.5

Development Essentials: Kotlin Edition [14], [15] is a

complete book that presents Android Studio and does

the walkthrough to set up an Android development

and testing environment. It continues with an

introduction to programming in Kotlin, including data

types, flow control, functions, lambdas, and object-

oriented programming.

Ian F. Darwin’s Android Cookbook: Problems and

Solutions for Android Developers [16], introduces

work with accelerometers and other Android sensors,

the use of various gaming and animation frameworks,

the storage and retrieval of persistent data in files and

embedded databases, and the access of RESTful web

services with JSON and other formats.

Android has had a considerable growth rate, from

the very first versions to the last one, improving their

API and frameworks, and also changing their main

programming language from JAVA to Kotlin.

Therefore, as a technical resource, the official Android

development website is in fact the best source of up-

to-date examples and descriptions of each concept,

process or SDK related topic.

Selected Mobile Device Content

In this section, we present the topics we have

chosen to cover. We dismissed topics already seen by

our students, such as the object-oriented programming

paradigm and UI design.
The course is planned as follows, with three main

units: 1) Kotlin language essentials, which covers the

technical aspect of the language with several analyses

of different apps, smart context, and ubiquitous

computing topics. 2) We start understanding the

architecture of Android OS and its apps, activity

lifecycle, and an incremental exploration from GUI,

events, states, access to sensors, and external services.

3) The main approach in this unit is to explore a

solution to a problem proposed by the student, or

selected from instructor suggested topics, that can be

addressed with a mobile app. We expect to

complement and integrate all the previous

competencies and skills. A summary is presented in

Table 3.

Unit 1

This unit introduces the essentials to the new

programming language, with the aim of solving

technical problems. We finish with a project where

students have to implement a game that requires an AI

algorithm. These algorithms where previously taught,

both theoretically and practically, and the goal here is

to have a first approach to solving problems in console

with Kotlin.

Table 3. Mobile Device Programming topics.

Topic Weeks Details

Unit 1 4 Kotlin essentials

Control structures.

Loop control.

Data structures.

Functions.

MultiThreading.

Project with AI algorithm.

Unit 2 6 Android essentials.

Android Studio editor.

Android architecture.

Activity lifecycles

GUI.

Working with managers (sensors,

preferences, etc).

Working with Webservices.

Working with storage.

App portfolio.

Unit 3 4 Integration project.

Integration project and refinements.

Unit 2

Since the technical aspects of Kotlin programming

are covered, we start integrating mobile device

specific aspects. We create different apps,

incrementally adding new topics, with the aim of

introducing a general approach to application

development using different resources. Here, a second

integration comes with the implementation of the first

project, now in a mobile environment, where they

need to take care of the GUI design, events, and states

of activity, among other important aspects.

Unit 3

The last unit aims to serve as an integration arena

for solving a problem that requires the use of external

services. It allows students to refine their previously

acquired knowledge while encouraging their

autonomy.

The integration of knowledge and competencies is

very important for courses to provide the basic skills

for the creation of products that require a

multidisciplinary point of view. Even though mobile

apps can be developed by a single developer,

professional development considers many aspects

besides programming. Larger teams manage by

pooling together people with different skill sets. Our

program stresses this multidisciplinary aspect, by

Authorized licensed use limited to: Universidad de Talca. Downloaded on April 14,2020 at 22:16:29 UTC from IEEE Xplore. Restrictions apply.

1521-9615 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MCSE.2020.2986758, Computing in Science & Engineering

Department Head

6 Computing in Science & Engineering

having students undertake User experience (UX) and

design aspects as well as technical and algorithmic

aspects.

RESULTS

In the AI course, a programming assignment was

linked to external AI competitions at the IEEE

Conference on Games (IEEE CoG). One of the groups

placed in fifth position, out of twelve participants, in

the µRTS competition. It is worth noting that their

entry beat the previous year’s winner, and that all

higher placed entries were submitted by graduate

students.

The same course had a research assignment, where

students were asked to write a report on a topic of

their choosing, related to video game AI. Two of those

reports [17], [18] were later turned into exploratory

surveys and accepted for presentation at the IEEE

Chilecon 2019 conference. A third one is currently

under review at a journal.

In the Mobile Device Programming course,

students go on to develop several applications. In the

first unit, they develop Kotlin console apps. Figure 1

shows a Microrobots puzzle being solved using a

single agent search or pathfinding algorithm from the

AI course. The game consists on finding a path from a

starting position to a destination, moving on cardinal

directions, between squares with the same number

and/or color.

On the second unit, they developed a full-fledged

game application, Connect4, shown in Figure 2,

which requires an adversarial tree search algorithm.

DISCUSSION

These syllabi are specifically tailored to our

students. For students with a greater algorithmic

knowledge, the first section of the AI course, on

search can be skipped. Conversely, students new to

game programming will probably benefit from a

section on movement and animation.

If the program curriculum included a second AI

course, we would move PCG and tree search there.

That second course would also contain machine

learning and reinforcement learning modules, as well

as player modeling. The extra time in the first course

would be used for expanding our coverage of

pathfinding algorithms, specifically world

representations, and adding single-agent planning

algorithms to our decision-making module.

Figure 1. Example of the Microrobots console

mobile application developed in Kotlin.

Figure 2. Example of a Connect 4 mobile

application developed in the course.

Likewise, the mobile device programming course

is also tailored to our students. The two main

considerations were: 1) algorithmic knowledge and

previous programming courses (structured and object-

oriented OO); and 2) courses in the same semester,

which are: Operating Systems and Networking and

Usability and Interfaces.

The first unit focuses on Kotlin’s essentials,

considering our students already know the OO

paradigm and JAVA language. If the first OO

programming course was taught in Kotlin, we could

probably skip this unit.

The second unit, which focuses on Android

essentials, can be extended depending on the goals of

the program. In this case, we aim for giving the

students a strong basic foundation that allows them to

keep learning and improving their skills and

competencies autonomously. It would be very

interesting to include topics such as Media resources,

OpenStreetMap (OSM) and Google maps (in detail),

Android instant apps, Google Play store publishing, or

cloud storage, among others. But, by giving students

the freedom to choose their own project topics, we

Authorized licensed use limited to: Universidad de Talca. Downloaded on April 14,2020 at 22:16:29 UTC from IEEE Xplore. Restrictions apply.

1521-9615 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MCSE.2020.2986758, Computing in Science & Engineering

July/August 2020 7

allow them to explore some of these topics or just

deepen their knowledge of previous ones.

Finally, it is worth noting that the courses

presented here are a good complement to our

department's main research fields: ubiquitous and

pervasive computing, mHealth, uHealth, gamification,

user experience, video game development and video

game AI. Even more to the point, these courses are a

very good match for the authors' research topics, as

evidenced by their latest papers on gamification of a

mobile app for HIV prevention [19] and on using

supervised learning, search algorithms and

reinforcement learning for video game AI [20].

CONCLUSIONS

Our program covers the major sources of game AI

content by professional practitioners along with

academic researchers in the field. Where we found

significant overlap, we added it to our syllabus, with

some exceptions where our students had already

covered the topics in previous courses. On subjects in

which there was some disagreement, we have opted

for content we expect will become more relevant to AI

practitioners in the video game industry in the near

future. We have also made suggestions on how to

adapt this course to your own program curricula, by

taking into account previous courses, or the possibility

of more than one game AI course.

In the same way, for mobile devices, the course

allows the students to create a strong foundation for

developing mobile apps. But it’s important to take into

consideration the convergence of knowledge of all the

previous and parallel courses, which allow explaining

easily some important parts of the technical point of

view of programming. Having as a tool the integration

of previous topics (i.e. AI algorithms), allows the

students to develop projects to familiarize themselves

with a new language, while separating the technical

challenges, from the algorithmic ones. Conversely, the

earlier course can establish strong theoretical

foundations without the need to develop full-fledged

applications. Lastly, the students learn to iterate the

same solutions, from algorithms, to basic

implementations, to mobile applications, making

mental connections from the computer science,

software engineering, and product design aspects of

application development.

We have found that the connection between

subsequent courses is well received and culminates in

course projects that are more advanced and

compelling for both students and instructors. The

course design presented in this paper has remained

stable for the last two years. Due to its success, we

plan on integrating further AI algorithms into the

mobile device programming course for next year's

offering.

 REFERENCES
1. J. DeNero and D. Klein, “Teaching introductory artificial

intelligence with pac-man,” in Proceedings of the

Symposium on Educational Advances in Artificial
Intelligence, 2010, pp. 1–5.

2. A. Barella, S. Valero, and C. Carrascosa, “Jgomas: New

approach to ai teaching,” IEEE Transactions on education,

vol. 52, no. 2, pp. 228–235, 2009.

3. F. Besoain, “Video Games Development and Virtual
Reality Engineering program summary”,

https://doi.org/10.6084/m9.figshare.12000588.v1, 2020. .

4. Publications Office of the European Union, ECTS Users’
Guide, European Union, 2015.

5. I. Millington and J. Funge, Artificial intelligence for

games. CRC Press, 2009.

6. M. Buckland, Programming Game AI by Example, ser.

Wordware Game Developers Library. Jones & Bartlett
Learning, 2004.

7. G.N. Yannakakis and J. Togelius, Artificial Intelligence

and Games. Springer, 2017.

8. D. Mark, Behavioral Mathematics for Game AI, ser.

Applied Mathematics. Cengage Learning, 2009.

9. B. Schwab, AI Game Engine Programming, 2nd ed.
Cengage Learning, 2008.

10. N. Shaker, J. Togelius, and M.J. Nelson, Procedural

Content Generation in Games: A Textbook and an
Overview of Current Research. Springer, 2016.

11. S. Rabin. Game AI Pro: collected wisdom of game AI

professionals. AK Peters/CRC Press, 2013-2017.

12. S. Rabin. AI Game Programming Wisdom. Charles River

Media, 2002-2008.

13. D. Griffiths and D. Griffiths. Head First Android
Development: A Brain-Friendly Guide, 2nd ed. O’Reilly

Media, 2017.

14. N. Smyth, Android Studio 3.0 Development Essentials -

Kotlin Edition. Payload Media, Inc., 2017.

15. ——, Android Studio 3.5 Development Essentials -Kotlin
Edition. Payload Media, Inc., 2019.

16. I.F. Darwin, Android Cookbook: Problems and Solutions

for Android Developers. O’Reilly Media, 2017.

17. G.K. Sepulveda, F. Besoain, and N.A. Barriga, “Exploring
dynamic difficulty adjustment in videogames,” In IEEE

CHILEAN Conference on Electrical, Electronics

Engineering, Information and Communication
Technologies, 2019.

18. I. Gajardo, F. Besoain, and N.A. Barriga, “Introduction to

behavior algorithms for fighting games,” In IEEE

CHILEAN Conference on Electrical, Electronics
Engineering, Information and Communication

Technologies, 2019.

19. F. Besoain, A. Perez-Navarro, C. Jaques Aviñó, J.A.

Caylà, N.A. Barriga, P. Garcia de Olalla. UBESAFE:
prevention of HIV and others STI by geofencing and

contextualized messages with a gamified App. JMIR

mHealth and uHealth.

20. N.A. Barriga, M. Stanescu, F. Besoain, M. Buro.
Improving RTS Game AI by Supervised Policy Learning,

Tactical Search, and Deep Reinforcement Learning IEEE

Computational Intelligence Magazine 14 (3), 8-18.

Authorized licensed use limited to: Universidad de Talca. Downloaded on April 14,2020 at 22:16:29 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.6084/m9.figshare.12000588.v1

1521-9615 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MCSE.2020.2986758, Computing in Science & Engineering

Department Head

8 Computing in Science & Engineering

Nicolas A. Barriga is a professor

with the School of Video Game

Development and Virtual Reality

Engineering at Universidad de

Talca, Chile. He obtained his Ph.D.

at the University of Alberta,

Canada, for his work on state and

action abstraction mechanisms for

RTS games. His current research interests are in the

broad area of video game AI.

Felipe Besoain is a professor with

the Bioinformatics Department and

the School of Video Game

Development and Virtual Reality

Engineering at Universidad de

Talca, Chile. He obtained his Ph.D.

Universidad Oberta de Catalunya,

Barcelona, Spain, for his work in

mobile devices and ubiquitous computing. His research

interests are the application of information technologies

in intelligent contexts for bioinformatics, agronomy and

health areas; and the use of ubiquitous computing and

mobile devices, gamification and virtual reality applied

to mHealth.

Authorized licensed use limited to: Universidad de Talca. Downloaded on April 14,2020 at 22:16:29 UTC from IEEE Xplore. Restrictions apply.

