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One of the main costs of developing a videogame is content creation. Procedural Content

Generation (PCG) can help alleviate that cost by algorithmically generating some of the
content a human would normally produce. We first describe and classify the different

types of content that can be automatically generated for a videogame. Then, we review

the most prominent PCG algorithms, focusing on current research on search-based and
machine learning based methods. Finally, we close with our take on the most impor-

tant open problems and the potential impact solving them will have on the videogame

industry.
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1. Introduction

Procedural Content Generation (PCG) is the automation of media production. This

media can be anything a human would usually author, such as poetry, paintings,

music, architectural drawings or film. PCG for games is the use of algorithms to

produce game content that a designer would typically create, such as textures,

sound effects, maps, levels, characters, weapons, quests or even game mechanics and

rules. We will focus on content that directly relates to game mechanics and player

interaction, that is, on functional, rather than cosmetic content. In particular, we

are interested in what Hendrikx et al.1 calls game space, systems and scenarios,

which includes maps, ecosystems, levels and stories (among others). This doesn’t

mean that cosmetic content isn’t important—what would the Super Mario Bros.

franchise be without it’s iconic character?—but rather a reflection on what the

current research needs are. Procedural generation of cosmetic content has received

plenty of attention from different communities (mainly from graphics, visualization

and sound design) over the last five decades, whereas functional content generation

is in its infancy.
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One of the main costs of developing a videogame is content creation, with some

researchers1 estimating it to be around 30%–40% of the US$20M–US$150M av-

erage budget for AAA games. This content production requires highly specialized

personnel, limiting the possibilities of small studios and increasing costs in bigger

companies. Fortunately, PCG techniques enable the algorithmic creation of content

without (or with limited) human effort.

This area of Artificial Intelligence (AI) saw its first applications in videogames

in the late 70s and early 80s, in games such as Rogue and Elite. In the first one, the

goal was replayability—generating novel content every time the game is started—,

while in the latter, the goal was compression—it takes less data to save the seeds

for a pseudo-random number generator than the sequence of numbers generated.

Almost 40 years after these first examples, PCG applications remain confined to

small niches (textures, dungeons) and are so uncommon, that the sole mention of

PCG being used in a project can turn them into worldwide (specialized) media

sensations, like No Man’s Sky, with it’s virtually infinite generated universe. This

lack of widespread adoption has three main causes: inadequate algorithms, lack of

tools, shortage of specialized professionals.

The algorithms for more basic content, such as textures and vegetation are very

mature, and as such, are widely used. However, as one goes up the content hierarchy,

towards generating levels, dialogue, story, mechanics or rules, current methods are

more primitive. There are some experimental systems available, but little commer-

cial adoption. Similarly, off-the-shelf, ready to use tools are only available for basic

content. This is partly because the algorithms are not ready, but also due to the dif-

ficulty in adapting general purpose algorithms to work seamlessly in very different

projects. Finally, with PCG in general—and PCG for videogames in particular—

being a relatively new and niche field, most formal education for computer scientists

and software engineers doesn’t include it. Which leads to the industry relying on

the few tools available, and no cross-pollination between academic research and

industrial development.

2. PCG Classification

Game content that can be procedurally generated has been classified1 in six types:

(1) Game Bits are the fundamental units of game content. They can be neces-

sary, such as the texture differentiate the main character from the enemies, or

optional, such as background music, but either way, they usually don’t inter-

act with the player directly when considered independently. Game bits include

textures, sound, vegetation, architecture and graphics effects (fire, water, etc.).

(2) Game Space is the environment in which the game takes place, and includes

maps and terrain.

(3) Game Systems simulate more complex environments such as ecosystems, road

networks, urban environments and entity interactions.
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(4) Game Scenarios organize the previous levels into coherent plans or sequence

of events. They include puzzles, stories and levels.

(5) Game Design is the set of rules and mechanics of the game.

(6) Derived Content can be created as a companion to the game world, like

leaderboards and news items covering player actions in the game world.

Togelius et al.2 presents, and Shaker et al.3 later expands, a taxonomy of con-

tent generation. As previously mentioned, some content is necessary, while other

is optional. It can be generated online during execution of the game, or offline,

during development. Some algorithms just take a random seed which completely

determines their generated content, while others offer a greater degree of control.

The generated content can be stochastic, changing with every run of the algorithm,

or deterministic, allowing for the re-generation of the same content multiple times.

The generation process might be constructive, with a built-in guarantee on the qual-

ity of the content, or it might use a generate-and-test approach, that keeps running

until the content satisfies some predefined property. Generation can be generic, or

adaptive, creating content specially tailored to each player. Finally, the process can

be completely automatic, or human interaction may be allowed (or required) in a

mixed-initiative generator.

Several classification schemes have been proposed to group PCG algorithms3,1,4,5

with usually four to six categories. For the purposes of this survey, we are going

to group them in three categories: traditional methods, search-based methods and

machine learning methods. Traditional methods include pseudo-random number

generators and constructive methods, generative grammars, fractals and noise, cel-

lular automata and others. Search-based methods include artificial intelligence and

operations research areas, such as heuristic search, local search and optimization.

Machine learning includes supervised learning, unsupervised learning and reinforce-

ment learning. Keep in mind that both the classification and the examples in each

category are somewhat arbitrary, but serve to further narrow our focus.

Some of the most desired and elusive qualities of a good PCG algorithm are

controllability, expressivity and believability. We need methods that provide human

designers some control over the generated content, that can express a wide range of

content without seeming repetitive but at the same time without feeling haphazard,

and that generate believable content.

Current AI-based generators have been shown to surpass their traditional coun-

terparts in these aspects6,7, though they may lag behind in speed and reliability,

usually not providing any hard guarantees about the generated content.

2.1. Traditional Methods

Pseudo-random number generators and other constructive methods where the first

to be applied in commercial videogames, and they have been widely used in dungeon

and labyrinth generation6. Its main advantages are simplicity and speed. They are

usually deterministic, generating the same content given the same seed. For this
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reason, they were first used as a method of data compression, were every piece of

content (usually a level) could just be represented as a single number: the seed to

generate it.

Generation by fractals and noise is mainly used to produce content that must

simulate the results of natural processes, such as mountains created by geological

processes, or rock or vegetation textures. Content generated by this class of algo-

rithms produce an organic feeling, and as such, they have been extensively used in

games featuring landscapes and to generate textures for non-game applications.

The use of grammars to generate vegetation is probably the most successful

case of videogame PCG. There are numerous established tools (such as SpeedTreea,

and their use in games, both AAA and independent, is widespread. This is an

example of techniques who have migrated from videogames to other areas, like film

or architecture. Other areas that could benefit commercially from grammar-based

PCG, are city generation8 and platformer games level generation7,9.

2.2. Search-based Methods

Most of the PCG academic research focus in the past decade has been on search-

based methods2. These techniques fall within the scope of generate-and-test meth-

ods, i.e., they generate content, and then evaluate it. However, rather than accepting

or rejecting it, they score it. An evolutionary algorithm or other search/optimization

procedure will keep producing content until a separate algorithm assesses that it

meets some predefined criteria, or it’s score is high enough.

Search-based methods are usually defined by three components: the space rep-

resentation, the evaluation function, and the search algorithm. The representation

has to balance size, reachability and locality. A very direct encoding will be able

to represent all of the possible solutions, while maintaining good locality—a small

change in the representation space translates to a small change in the solution

space. However, for most interesting problems, the size will be unmanageable (a

100x100 tiles maze encoded in a vector of length 10,000 is larger than most search

algorithms can handle). On the other end, a highly indirect encoding, like a list of

desired properties of the solution, or even just a random number seed, produce a

very small search space, but with very little locality and will leave large parts of

the solution space unexplored. A balance has to be struck, but where exactly that

balance lies, is deeply dependent on the problem and the algorithm used to solve it.

Once a solution has been generated, it has to be evaluated to assess its suitability.

Evaluation functions can be direct functions, like a simple linear combination of

features or a general function approximator (such as neural networks) trained on

real data. They can also involve simulations of the game, where an artificial agent

dynamically interacts with the generated content. Still, they can be interactive,

ahttps://store.speedtree.com/
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involving a human player, and either explicitly asking her for an evaluation, or

implicitly collecting data on the interactions.

Finally, a search algorithm has to explore the representation space and find the

highest evaluated candidate solutions. The vast majority of search-based content

generation research uses evolutionary algorithms. Table 1 shows a non-exhaustive

summary of the most notable techniques found in the literature. Game design, at

the top of the content hierarchy, stands out for only using direct representations and

simulation-based evaluation functions, when intuition would tell us that the more

complex content would lead to vast search spaces and slow simulations. However,

this is misleading, as only rules for very simple games have been generated. If we

take those out, current research seems to favour indirect representations and direct

evaluation functions for the most complex content remaining (game levels).

Table 1. Search-based game content generation

Content Type Generated Content Repr. Evaluation Ref.

Game Bits
Weapons in Galactic Arms
Race

Indirect Implicit interac-
tive

10,11

Buildings Indirect Explicit interac-

tive

12

Game Space
Racing game tracks Direct Simulation, NN 13,14

Terrain Indirect Direct 15

RTS maps Direct and in-

direct

Direct and simu-

lation

16,17

Game Systems
Number and board puzzles Direct Search-based

simulation

18,19

and Scenarios Super Mario Bros. levels Indirect Direct, NN 20

Generic game levels Indirect Direct 21

Game Design
Board game rules Direct Simulation 22

Grid game rules Direct Simulation 23

Board game rules Direct Simulation and
direct

24

2.3. Machine Learning

Most supervised machine learning (ML) problems are classification or prediction

problems. That is, after learning from a labelled dataset, the goal is to be able to

correctly classify (or predict a dependent variable of) a previously unseen input.

Still, there are several successful ways of using ML techniques for generation of

new content: Recurrent neural networks25, Autoencoders26, Generative Adversarial

Networks (GANs)27 and Markov Models28 being the most famous ones.

Neural networks have seen a recent resurgence in interest,punctuated by the

huge success achieved using deep Neural Networks for image classification29 in 2012.

Since then, they have helped reach new milestones in fields as diverse as speech
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recognition30 and board game playing31,32. PCG is no different, as can be seen in

table 2. As almost all generated content in this table corresponds to game levels, we

are going to further subdivide it in sequences, grids and graphs. Most 2D platformer

games are traversed linearly from left to right, leading to a natural sequential rep-

resentation of the level as a sequence of vertical slices. Games such as card games

can also be represented as sequences. Game levels in Real-Time Strategy (RTS),

Role-Playing Games (RPG) and open-world games can usually be represented as

grids. More complex game levels can be represented by more arbitrary graphs.

Table 2. ML-based game content generation

Level

Type

Game Algorithm Training Data Ref.

Sequence

Super Mario Bros. LSTM Original game levels;
simulated and hu-

man player trayecto-

ries.

25,33

Super Mario

Bros., Loderunner, Kid

Icarus.

Multi-dimensional

Markov

Chains (MdMC), Hier-
archical MdMC

Original game levels 34,35

36

Grid

Super Mario

Bros., Loderunner, Kid
Icarus.

Markov Random Field Original game levels 28

Super Mario Bros. Autoencoders Original game levels 26

StarCraft II resource
locations

CNN Human authored
maps

37

Graph

Super Mario Bros. K-means clustering Gameplay videos 38

Generic interactive fic-

tion

OPTICS clustering Crowdsourced

stories

39

3. Open Problems and Outlook

Previous research has identified several open problems in the field1,2,5. We believe

the most interesting ones to commercial videogame development are:

• Generate content at the top of the hierarchy. PCG at the systems and scenar-

ios layers haven’t seen much commercial use, except for early and simple games

(rogue-likes), or very notable exceptions (No Man’s Sky). The top of the hier-

archy (Scenarios and up) has been mostly explored academically and in very

constrained and simple games.

• More detailed generation. In several areas of game bits and space generation,

PCG is the norm (trees, terrain), while in some others, human authored content

still rules, even though PCG systems exist (maps, cities). The main different

is the level of detail that those systems can generate. SpeedTree can generate
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more detailed forests than any dedicated team of designers ever could, but the

best city generation algorithms still generate extruded building profiles, with

generic looking textures.

• Guaranteeing playability. A major impediment to widespread adoption of game

systems, scenario or design procedural generation is the lack of guarantees that

most search-based or machine learning approaches offer. This is not an issue for

offline or mixed-initiative generation, but it is a show-stopper for online gener-

ation. Carefully constructed indirect representations could ensure playability.

• Personalized content. A task no human can perform, but an online algorithm

could, is personalized content generation. By learning an internal player model,

a game could generate content specially tailored to each user, implicitly eval-

uating the new content during gameplay and adjusting accordingly. Such as

system has been used successfully to generate weapons in Galactic Arms Race

and to tailor attacking waves in Left for Dead, but not to full game levels.

• Data scarcity. Supervised machine learning techniques perform best when there

is abundant data available to learn from. If we wanted to generate extra levels

for a particular game, only those few levels that come with the game could

be readily used for training. The image recognition community has produced a

number of data augmentation techniques that could very likely help. Some early

work in domain transfer—training on data from a similar domain, but with more

data available—has shown promising results40. Reinforcement learning can also

be used where no data exists, but where a system for the learning agent to

interact with can be setup.

A few selected algorithms seem like a good fit to solve some of the previous

problems:

• Graph convolutional networks. Just as grid convolutional networks have been

used for generating images41, convolutional networks on graphs42 could be used

to generate game scenarios on graph representations.

• Autoencoders, Recurrent Networks and Generative Adversarial Networks.

These networks are seeing widepsread use for image generation (see for example

Ref. 43). LSTM recurrent networks have already been used for generating 2D

platformer levels25 and can probably be adapted to more difficult tasks. GANs

have not yet been applied to videogames, but the success of autoencoders on

generating, repairing and evaluating Super Mario Bros. levels26 makes us confi-

dent that they will be beneficial. Additionally, the discriminator network of the

GAN, can help identify unplayable content.

• One-shot and few-shot learning. There is a growing corpus of research on one-

shot44 and few-shot learning45,46, where a classifiers must generalize after seeing

a few (or only one) instances of a new category. These methods could help with

learning to generate content starting from a few human authored examples.

We can combine these techniques with successful search-based and traditional
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techniques. We could represent the content space indirectly as a generative grammar

system. An evolutionary algorithm searches the space, and a neural network serves

as the evaluation function.

4. Potential Impact

Procedural content generation has the potential to significantly reduce costs and

development time, be it by assisting designers or by automatically generating the

content. This is particularly marked in the development of sequels or reskins. A re-

skin is a common mobile game development practice where the company will release

several games that look different but share the same code. If the look part (textures,

maps, levels) is automatically generated, reskinning is almost free.

Also, the value of the final product is increased, by having a volume of content

that is essentially infinite. This can be manifested be either regenerating the game

world every time the player starts it (SimCity), to having the world be infinite for

all practical purposes (No Man’s Sky). In both cases, replayability is far greater

than what could be achieved by traditional design processes.

An ability that can never be mimicked by human designers, is the ability to

generate content tailored to each specific player, and to act instantaneously on

implicit feedback by the player. Personalized content could be a game changer in

the industry, the way that online gaming was, and virtual reality will soon be.

Finally, the most underdeveloped category of game content, derived content,

can help foster a community around a game, increasing the time span during which

the game is generating sales. These communities usually grow naturally around the

biggest blockbusters, helped by marketing teams. However, in smaller studios, it

might help to generate some content for these communities consumption (leader-

boards, news about the in-game world) automatically, so as not to overtax limited

human resources.
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